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Adhesions between neighboring cells or between cells and their surrounding tissue/matrix play a crucial role
in a wide range of biological processes. In order to investigate the competitive mechanisms between cell-cell
and cell-matrix adhesions, we here develop a theoretical framework for multiple interacting cells lying on a
planar matrix coated with distributed ligands. This model allows us to study, from the viewpoints of energy and
statistics, the effects of such physical mechanisms as binding energy of bonds, nonspecific interactions, elastic
deformation of cell membranes, and mixing entropy. Our calculations show that cell-matrix adhesion cannot
occur when the ligand density on the matrix is lower than a threshold value, and cell-cell adhesion does not
happen for a high ligand density. Glycocalyx repulsion plays a more important role in cell-matrix adhesion than
in cell-cell adhesion. In addition, it is found that the cell-cell adhesion density decreases as the number of cells
increases.
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I. INTRODUCTION

Cells need to bind with other cells or an extracellular
matrix in order to achieve many critical biological functions,
e.g., development, blood clotting, lymphocyte homing, in-
flammatory, and immune responses. Adhesive interactions
also provide an efficient pathway for cells to recognize their
nearby cells or extracellular matrix and to detect mechanical
stresses �1�. Indeed, cell-cell and cell-matrix adhesions take
place simultaneously in a wide range of biological processes
such as cell trafficking in and out of blood vessels, cell mor-
phogenesis and migration, and malignant cell invasion �2�.
Cell adhesion is mediated by a wide variety of cell adhesion
molecules �CAMs� which interact with the molecules on the
opposing cell or matrix. These adhesion molecules are
termed as receptors and ligands �3� and their kinetic and
mechanical properties have been studied by many research-
ers for their important roles in multifunctions of biological
systems �4�. They can also be divided into two groups, ho-
mophilic and heterophilic. In the homophilic group, a CAM
can bind with other CAMs of the same kind or, in other
words, the receptors serve also as their own ligands, while in
the heterophilic group, a CAM binds only with CAMs of
other kinds. Homophilic adhesion normally takes place in the
same type of cells, and heterophilic adhesion happens be-
tween different types of cells or between a cell and its sur-
rounding tissue or matrix �1,4,5�.

Cell adhesion is a dynamic process determined by the
competition of strong short-range attraction forces within
receptor-ligand pairs and long-range repulsion forces �e.g.,
undulation force� �6�. In addition, surface tension also affects
the cellular adhesion process �7�. Considerable experimental
and theoretical efforts have been directed toward understand-
ing the biophysical mechanisms of cell-cell and cell-matrix
adhesions. From the viewpoint of energy, cell adhesion is

controlled by the minimization of the total free energy of the
system, as a balance between competitive specific binding
and nonspecific repulsion �7–9�. The synaptic patterns of two
different lengths of bonds have been found to be important
for T cells adhering to their target cells �10–12�. Dembo et
al. �13,14� established a peeling model coupling the me-
chanical equations of an elastic membrane with the chemical
kinetics associated with cell-matrix adhesion. Evans �15,16�
proposed a continuum mechanics model of membrane-
membrane adhesion accounting for the discrete kinetically
trapped CAM cross-bridging forces. This model was later
elaborated to examine the effects of some other factors that
influence cell adhesion, e.g., the rigidity difference between
adhesion and nonadhesion zones, and the nonuniform ten-
sion in the membrane �17�. Lipowsky et al. �18–21� estab-
lished a statistical mechanics model to investigate the adhe-
sion of multicomponent membranes mediated by specific
adhesion molecules. Via Monte Carlo simulations, they stud-
ied the influences of several mechanisms, e.g., attractive
binding energy of bonds, mixing entropy of molecules, and
repulsive energy of glycocalyx, on the lateral phase separa-
tion of adhesion molecules. Weikl et al. �22,23� extended this
model to examine the effects of two different types of bonds,
and further demonstrated the influences of such mechanisms
as nucleation diffusion and length mismatch on lateral phase
separation. Evidently, a model system consisting of a ligand-
containing vesicle, treated as a two-dimensional surface
�24,25�, and a receptor-coated substrate is an ideal and prac-
tical context to gain a deeper insight into some, though not
all, fundamental aspects of cell adhesion �26–30�. The allo-
cation functions of bound and free receptors in the vesicle
can be determined from the equilibrium conditions of either
energies or forces as a function of the adhesion area, the
binding strength, and the receptor and ligand densities on the
vesicle and the substrate �26,27�. Through a thermodynamic
approach, Smith and Seifert �28� also discussed the influence
of repelling molecules incorporated in the vesicle membrane
on the formation of specific bonds.

In continuum mechanics models, the concentrations of
diffusive receptors and ligands on the biomembrane and the
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matrix are described by continuous density functions of sur-
face coordinates and time. However, continuum methods
cannot account for the discrete features of cell-cell or cell-
matrix interactions, nor can they describe the detailed evolu-
tionary structures and compositions within the adhesion
zones, which often play a significant role in the dynamic
processes �17�. Therefore, statistical methods have been ap-
plied to consider the stochastic features of discrete molecular
adhesions. In the statistical models �18–23,26–30�, the sur-
faces of the biomembrane and the matrix are normally di-
vided into a finite number of sites where receptors and
ligands can occupy. Smith and Seifert �26� proposed a ca-
nonical formulation of statistical theory to study the effective
adhesion strength of specifically bound vesicles. Based on
their experimental observations that cell adhesion is some-
times mediated by a small number of receptor-ligand bonds,
Zhu and co-workers �31–34� treated small-scale adhesions as
a series of stochastic events. Zhu’s kinetics model is espe-
cially efficient and has been widely applied for small sys-
tems, in which case cells do not compete for adhesion mol-
ecules �34�.

Most previous theoretical efforts have been directed to-
ward the adhesion between two cells or between a cell and a
surrounding matrix. These well-defined models have cap-
tured, to different extents, a variety of crucial physical
mechanisms in cell adhesion and some relevant biological
processes. In many realistic and experimental situations, a
cell adheres to other cells and a matrix simultaneously. The
properties of a matrix usually have a significant influence on
the adhesion behavior of cells lying on it, as has been dem-
onstrated by experiments �2,35�. Hegedüs et al. �2� examined
the interplay of cell-cell and cell-matrix interactions and its
role in the malignant cell invasion process. Furthermore, tis-
sue formation and maintenance are regulated by different
mechanical signals between cell-cell and cell-matrix interac-
tions �35�. The immigration of interacting or aggregated cells
is also sensitive to the relative strength of mechanical signals
from the surrounding matrix, besides those from neighboring
cells. Cell-cell adhesion competes for CAMs directly with
cell-matrix adhesion, and this affects the adhesion strength
between cells and the extracellular matrix. Thus, of impor-
tance is to study the interplay between cell-cell and cell-
matrix adhesions.

Therefore, the present paper aims to theoretically study
the adhesion of two or more cells with mobile receptors ad-
hering to a matrix coated with immobilized ligands. We ac-
count for the discrete thermodynamic process by using the
classical Bell’s adhesion model �8� in combination with
Smith’s canonical formulation for specific cell-matrix adhe-
sion �26–28�. Cell-cell and cell-matrix adhesions take place
simultaneously and compete for the adhesion molecules be-
cause their number is limited. Based on the considerations of
biophysical mechanisms of cell adhesion, we will study the
adhesion problems of two, three, and an infinite number of
cells positioned abreast on a matrix and discuss the competi-
tive relation between cell-cell and cell-matrix adhesions. The
functional of the total free energy of the system is first for-
mulated, and a Monte Carlo method is utilized to find the
equilibrium state that minimizes the free energy. The influ-
ences of such factors as the ligand density on the matrix,

intrinsic properties �equilibrium lengths and spring con-
stants� of cell adhesion molecules, and surface tension are
investigated.

II. ADHESION MODEL

To study the competitive biophysical mechanisms of cell-
cell and cell-matrix adhesions that happen simultaneously,
we first propose a statistical mechanics model based on
Bell’s adhesion model �8� in combination with the canonical
formulation in Refs. �26–28�. For the sake of simplicity, we
first consider only two cells adhering to a planar extracellular
matrix, as shown in Fig. 1, and the model will be extended to
the cases of three or an infinite number of cells in Sec. V.
Evidently, cell-cell and cell-matrix adhesions are elicited by
different intracellular signaling pathways. The CAMs on the
cell membranes can mobile freely, and then they can form
bonds at any position in the cell-cell adhesion zone. By con-
trast, the CAMs on the matrix are usually fixed and immobile
and, hence, the receptors on the cell membranes cannot bind
to the matrix until they move to the seats with immobile
ligands on the matrix surface. On one hand, therefore, cell-
matrix adhesion is dominantly reliant on the ligand concen-
tration on the matrix, as observed in experiments �36,37�. On
the other hand, the two processes of cell-cell and cell-matrix
adhesions compete with each other due to the limited number
of CAMs on the cell membranes.

In our current study, we assume that the immobilized
ligands on the matrix are uniformly distributed, while the
receptors on the cell membranes can move freely. The gly-
cocalyx, which acts as repellers �20,21,28�, is also freely
mobile on the cells. The two cells are assumed to be of the
same type and have the same volume, area, and receptor
density. Therefore, the bonds formed during cell-cell adhe-
sion are receptor-receptor or homophilic pairs, while those
between the cells and the matrix are receptor-ligand or het-
erophilic pairs. The receptor-ligand interaction between a
cell and the matrix can take place only within their contact
zone A0, and the receptors on the two cells interact only
within their contact zone A1 �see Fig. 1�.

The total Gibbs free energy G of the cell-matrix system
can be written as

G = U + � + W − TS , �1�

where U is the total binding energy of all the receptor-
receptor and receptor-ligand bonds, � is the nonspecific in-

FIG. 1. �Color online� Two contacting cells lying on an extra-
cellular matrix coated with uniformly distributed ligands. The
ligands on the matrix are fixed, while the receptors and glycocalyx
molecules on cell membranes are freely mobile. The contact radii of
cell-matrix and cell-cell adhesion zones are r0 and r1, respectively.
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teraction energy associated with the long-range force, W is
the elastic deformation energy of the cell membranes, T is
the absolute temperature, and S is the mixing entropy.

A. Binding energy of bonds

Forming a single bond, a receptor-receptor or a receptor-
ligand pair, will release a certain amount of free energy, Ea,
referred to as the binding energy. It takes the form �26�

Ea = CbkBT , �2�

where kB is the Boltzmann constant and Cb is a constant in
the range 5–20 for different bonds �38�. The total binding
energy of the system is the sum of all the bonds formed in
the three contact zones, and it serves as the main driving
force for the cell-cell and cell-matrix adhesions. The total
free energy change of the system due to binding is expressed
as

U = − 2Nb0Ea − Nb1Ea, �3�

where Nb0 and Nb1 are the numbers of bonds formed in each
cell-matrix contact zone and the cell-cell contact zone, re-
spectively.

B. Nonspecific interaction energy

Such forces as electrostatic force, arising from the nega-
tive charges on the cell surfaces, and steric stabilization
force, arising from the glycocalyx molecules coated on the
cell membranes, tend to reject cell adhesion �8�. If the bind-
ing strengths of bonds are not sufficiently strong, cell adhe-
sion will not take place due to the long-range repulsive
forces. According to Burroughs and Wülfing �12�, who stud-
ied the driving force of synapse dynamics, the long-range
interaction potential around the balance distance Lb can be
written in the following simplified form

��h� =
1

2
��h − Lb�2, �4�

where the coefficient � represents the strength of the glyco-
calyx potential, and h is the distance between the membrane
surface and the matrix. This potential was also adopted and
discussed in Refs. �39,40�. Here, we modify the above equa-
tion to the more complicated situation of current interest. It is
reasonable to assume that the glycocalyx on the cell mem-
branes can move freely and the parameter � has different
values in the cell-cell and cell-matrix adhesion zones. For the
glycocalyx, its equilibrium length Lg is taken as the balance
distance, and its spring constant �g as the strength of glyco-
calyx potential. For receptor-ligand and receptor-receptor
pairs, we also take their equilibrium lengths Lb0 and Lb1
as their balance distances, and their spring constants �b0
and �b1 as their strengths of the corresponding potentials,
respectively. Therefore, we use Eq. �4� to describe the inter-
action for each kind of molecular pairs. This potential can
reduce to the single-parameter model for the interaction of
molecules between two surfaces adopted in Refs. �26,28,40�.
In the present paper, the three-parameter model in Eq. �4� is

assumed in order to examine the influences of such factors as
the mismatch between the equilibrium lengths of bonds and
glycocalyx. In addition, it is also noticed that we neglect the
interaction potential outside the adhesion zones or, in other
words, the potential function has been truncated.

The interaction potential energy of the whole system,
which is the sum of all molecules in adhesion zones, can be
written as

� = Nb0�b0�h0 − Lb0�2 +
1

2
Nb1�b1�h1 − Lb1�2

+ Ng0�g�h0 − Lg�2 + Ng1�g�h1 − Lg�2, �5�

where the subscripts 0 and 1 stand for the parameters in the
cell-matrix contact zone A0 and cell-cell contact zone A1,
respectively, Ng0 and Ng1 are the numbers of glycocalyx mol-
ecules, and h0 and h1 are the separation distances of the
opposing surfaces in the corresponding zones. From �� /�hi
=0 �i=0 or 1�, it is known that the equilibrium separation hi
is just between the two balance distances of bonds and gly-
cocalyx, that is, Lbi�hi�Lg. This indicates that the glyco-
calyx plays a repulsive role in the adhesions while the
receptor-receptor and receptor-ligand bonds are in the attrac-
tive range.

C. Elastic deformation energy of cell membranes

During the progress of cell adhesion, cells change their
shape and increase the elastic energy of their membranes to
oppose the adhesive contact. Exact determination of cell
shapes in adhesion is an important but complicated issue
�18�, especially for the current problem consisting of mul-
tiple cells adhering to a matrix. To focus our attention on the
competitive mechanisms between cell-cell and cell-matrix
adhesions, we assume each cell has a truncated sphere shape.
Denote the original radius of the spherical cell as R0 and the
original surface area of each cell At=4�R0

2. The volume of
the truncated sphere of one cell illustrated in Fig. 1 is

V =
4

3
�R3 −

1

3
�h0

2�3R − h0� −
1

3
�h1

2�3R − h1� , �6�

where h0=R−�R2−r0
2, h1=R−�R2−r1

2, r0, and r1 are the
contact radii of the adhesion zones A0 and A1, respectively,
and R is the radius of the deformed sphere. It is generally
reasonable to assume that the volume V keeps a constant
during cell deformation �41,42�, that is, V=4�R0

3 /3.
Thereby, R is approximately expressed as

R

R0
= 1 +

1

16
� r0

4

R0
4 +

r1
4

R0
4� . �7�

Then the surface area change of each cell is

�A = 2�R�R2 − r0
2 + 2�R�R2 − r1

2 + A0 + A1 − At . �8�

The increment of the elastic energy of cell membranes is the
sum of bending and stretching components �43�

�W =
1

2
BkBT��1 + �2 − �0�2�2A0 + A1� + 2��A , �9�
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where BkBT is the bending stiffness, �1 and �2 are theprin-
cipal curvatures, �0 is the spontaneous curvature, � repre-
sents the surface tension of cell membrane, and �A is the
deformation-induced surface area change of each cell. In Eq.
�9�, the two terms are the bending energy and the stretching
energy, respectively. Compared with the binding energy of
bonds on the order of about 10−17 J /	m2, the bending en-
ergy of cells is typically on the order of about 10−21 J /	m2

and then can be neglected �26�. Therefore, we simplify Eq.
�9� as

�W = 2��A . �10�

If there is no cell-matrix adhesion but merely cell-cell adhe-
sion, Eqs. �8� and �10� will degenerate to the expression for a
single cell adhering to a matrix given by Coombs et al. �7�.

D. Mixing entropy

The mixing entropy S can be calculated by counting the
number 
 of all possible conformations of the positions of
all molecules in the whole system. One has


 = 
1 � 
2, �11�

where 
1 is the number of possible conformations of the
positions of molecules in the system except in the cell-cell
adhesion zone, and 
2 is the number of possible conforma-
tions of the positions of molecules in the cell-cell adhesion
zone.

Let Nt denote the total number of receptors in each cell,
Nf0 and Nf1 the numbers of free receptors within A0 and A1,
respectively, �0 the fraction of the ligand-occupied surface
area of the matrix, also referred to as the ligand density, and
 the gyration area of a single receptor. For simplicity, each
ligand on the matrix and each repelling molecule, glycoca-
lyx, are assumed to have the same gyration area with the
receptor.

In the calculation of 
1, one can place Nt−Nb0−Nf0
−Nb1−Nf1 free receptors on the total available sites in the
free or nonadhesive zone of each cell, Nf0 free receptors on
the available sites not occupied by ligands in A0 of each cell,
Nb0 receptor-ligand pairs on the total available ligand sites in
A0 of each cell, Ng0 repellers on the available sites not occu-
pied by ligands and free receptors in A0 of each cell, and
Ng−Ng0−Ng1 repellers on the total available sites not occu-
pied by receptors in the free part of each cell. Then we get


1 = � 1


�At + �A − A0 − A1�

Nt − Nb0 − Nf0 − Nb1 − Nf1
	

2

� 1


�1 − �0�A0

Nf0
	

2

� 1


�0A0

Nb0
	

2

� 1


�1 − �0�A0 − Nf0

Ng0
	

2

�� 1


�At + �A − A0 − A1� − �Nt − Nb0 − Nf0 − Nb1 − Nf1�

Ng − Ng0 − Ng1
	

2

. �12�

Similarly, in the calculation of 
2, one can place Nf1 free
receptors on available sites in A1 of each cell, Nb1 receptor-
receptor pairs on the available sites not occupied by free
receptors in A1, and Ng1 repellers on the available sites not
occupied by free receptors and bonds in A1 of each cell.
Therefore, 
2 reads


2 = � 1


A1

Nf1
	� 1


A1 − Nf1

Nf1
	� 1


A1 − 2Nf1

Nb1
	

�� 1


A1 − 2Nf1 − Nb1

Ng1
	� 1


A1 − 2Nf1 − Nb1 − Ng1

Ng1
	 .

�13�

Treating the mobile bonds and other free molecules as
solutes in a two-dimensional solvent along the interface, the
mixing entropy can be written as �26,44,45�

S = kB ln 
 . �14�

Then, S can be calculated by using the Stirling formula
for the factorials of large numbers, but its lengthy expression
is not given here. If there exists no cell-cell adhesion but
only cell-matrix adhesion, Eqs. �11�–�14� will reduce to the
expressions for a single cell derived by Smith and Seifert
�26�.

III. COMPUTATIONAL PROCEDURE

The adhesion model presented in the preceding section
can account for the effects of binding energy, nonspecific
interactions, membrane deformation, and mixing entropy.
Due to the intrinsic complexity in the coupled cell-cell and
cell-matrix adhesions, a Monte Carlo numerical method is
here adopted to study the interplaying mechanisms of cell-
cell and cell-matrix adhesions. We seek the equilibrium state
by minimizing the Gibbs free energy of the system. For con-
venience, we use the following normalized or dimensionless
parameters in the simulations:

g =
G

NtkBT
, Q0 =

�b0

�g
, Q1 =

�b1

�g
, �cm =

Nb0

A0
,
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�cc =
Nb1

A1

at =
At

Nt
, �a =

�A

Nt
, a0 =

A0

Nt
, a1 =

A1

Nt
, �� =

�

kBT
,

nb0 =
Nb0

Nt
, nb1 =

Nb1

Nt
, nf0 =

Nf0

Nt
, nf1 =

Nf1

Nt
, �15�

ng0 =
Ng0

Nt
, ng1 =

Ng1

Nt
.

The dimensionless adhesion areas �a0, a1�, the normalized
numbers �nb0, nb1� of bonds, the normalized numbers �nf0,
nf1� of free receptors, the dimensionless numbers �ng0, ng1� of
repellers within the adhesion zones, and the separation dis-
tances �h0, h1� are varied in certain ranges in order to mini-
mize the dimensionless energy function g. The ten variables
must satisfy the following constraint conditions:

�i� Evidently, the dimensionless adhesion areas and sepa-
ration distances cannot be negative. Besides, the contact radii
�r0, r1� cannot exceed the original radius R0 of the cell �7�.
Hence, one has

a0 � 0, a1 � 0, h0 � 0, h1 � 0,

a0 � at/2, a1 � at/2. �16�

�ii� Since the numbers of receptors �bound or free� in the
adhesion zones cannot exceed the total number of receptors
on the cell membranes, the parameters nb0, nb1, nf0, and nf1
should satisfy the inequalities

0 � nb0 � 1, 0 � nb1 � 1, 0 � nf0 � 1,

0 � nf1 � 1, 0 � nb0 + nb1 + nf0 + nf1 � 1. �17�

�iii� The numbers of repelling molecules must fulfill the fol-
lowing conditions:

0 � ng0 � ng, 0 � ng1 � ng, 0 � ng0 + ng1 � ng.

�18�

�iv� The number of bonds in A0 cannot exceed the total num-
ber of ligands in the same region, the number of free mol-
ecules in A0 is restricted by the number of the available sites
in A0 that are not occupied by ligands, and the number of all
molecules �bonds, free receptors, and repellers� in A1 cannot
exceed the number of all sites in A1. Therefore, it is required
that

nb0 � �0a0, nf0 + ng0 � �1 − �0�a0, �19�

2nf1 + nb1 + 2ng1 � a1.

Thus the problem becomes the minimization of the free
energy g as a function of the ten variables subjected to the 17
constraint conditions in Eqs. �16�–�19�. These variables are
also denoted as xi for simplicity of calculations. Due to the
larger numbers of variables and constraints, it is difficult to
get the minimum values of g using conventional numerical

methods. Here, we develop a Monte Carlo numerical method
to solve this complicated problem of nonlinear mathematical
programming. In each step, we specify a random variation
�xi to a random variable xi and calculate the corresponding
change �g of the free energy, which is adopted as the accept/
reject criterion to judge whether the trial perturbation will be
accepted or not. If �g�0, we accept this variation �xi, and
update xi by xi+�xi in the next step; otherwise we will still
use xi in the next step. In this manner, all the ten variables
will gradually approach their optimal values, corresponding
to the minimum of the free energy function. The solution
algorithm is briefly described as follows:

�i� Create the initial random values of the ten variables,
under all the 17 constraint conditions in Eqs. �16�–�19�.

�ii� Generate a random integer i, in the range of 1� i
�10, such that the variable xi will be chosen to change in the
following step.

�iii� Generate a random infinitesimal variation �xi.
�iv� Replace xi with xi+�xi and check whether the ten

variables satisfy the 17 constraint conditions or not. If they
are all fulfilled, then go to step �v�; otherwise, return to �ii�.

�v� Calculate the corresponding variation of the free en-
ergy, �g= ��U+��+�W−T�S� / �NtkBT�. If �g�0, we will
replace xi with xi+�xi in the next step; otherwise, we will
still use xi.

�vi� Repeat steps �ii�–�v� until the minimum value of g is
achieved.

The fast convergency, high efficiency, and good accuracy
of this method have been demonstrated by a large number
of calculation examples, some of which will be given in
Sec. IV.

IV. RESULTS AND DISCUSSIONS

In this section, we will study the influences of such fac-
tors as the ligand density, the bond properties of receptor-
receptor and receptor-ligand pairs, and the resistance mecha-
nisms on the competition between cell-cell and cell-matrix
adhesions. As aforementioned, the resistances result mainly
from the membrane elasticity and the glycocalyx repulsive
potential. In the examples, we assume that each cell has a
surface area of 500 	m2 and contains 105 receptors �8� and
5�106 glycocalyx molecules �9� on its surface. The
receptor-ligand and receptor-receptor pairs are assumed to
have the same equilibrium lengths of Lb0=Lb1=11 nm and
the same spring constants of �b0=�b1=0.25 pN /nm �45�.
The equilibrium length of glycocalyx is set to be Lg
=30 nm, and the corresponding spring constant is �g
=0.01 pN /nm �45�. Additionally, the gyration area of a
single molecule  and Cb are taken as 38.5 nm2 and 10,
respectively �26�, and the surface tension is �=0.1 pN /nm
�7�. Unless stated otherwise, these values will be used in the
calculations throughout the paper.

A. Effect of the ligand density on the matrix

We first examine the role of the ligand density �0 on the
matrix in the competitive process of cell-cell and cell-matrix
adhesions, as shown in Fig. 2. It is found that when the
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normalized ligand density �0 is lower than a threshold value
of about 0.022, the normalized bound receptor number nb0
and the normalized cell-matrix adhesion area a0 remain al-
most zero �Figs. 2�a� and 2�b��, indicating that the two cells
will adhere to each other but not to the matrix. Due to the
low concentration and immobility of ligands on the matrix,
only a small number of receptor-ligand pairs can form be-
tween the cells and the matrix. In this case, the matrix cannot
provide sufficient positions to form bonds with the receptors
on the cell surfaces, and the binding energy released due to

cell-matrix adhesion is insufficient to overcome the resis-
tances resulting from surface tension and glycocalyx repul-
sion. With the increase in �0 from 0 to 0.022, the fraction nb0
of the bound receptors in the cell-matrix adhesion zone and
the normalized area a0 of the cell-matrix adhesion zone re-
main almost zero. At the same time, the fraction nb1 of the
bound receptors in the cell-cell adhesion zone and the nor-
malized area a1 of the cell-cell adhesion zone keep constant,
as can be seen from Fig. 2. Therefore, there exists a critical
ligand density below which cells will not adhere to the ma-
trix, as is consistent with experimental observations �36,37�.

With the increase in �0 in the range of 0.022–0.04, the
matrix surface will have more and more sites where the re-
ceptors can bind the ligands, leading to an increase in the
binding energy per unit area. Therefore, the normalized
bound receptor number nb0 increases, whereas the normal-
ized bound receptor number nb1 decreases as a result of the
conservation of the total number of receptors. The normal-
ized cell-matrix adhesion area a0 and a1 have the same
changing tendencies with nb0 and nb1, respectively. When
�0�0.04, the two cells will adhere only to the matrix but not
to each other. In other words, there exists a critical ligand
density above which cell-cell adhesion will not happen.

To more clearly illustrate this competitive mechanism, de-
fine the cell-cell adhesion density �cc=Nb1 /A1 and the cell-
matrix adhesion density �cm=Nb0 /A0 to represent the cor-
responding binding energy values per unit area in A1 and A0,
respectively. It is interesting to find from Fig. 2�c� that �cc is
much larger than �cm when both cell-cell and cell-matrix
adhesions develop. In other words, the bond density in A1 is
always much higher than that in A0 provided that cell-cell
adhesion exists. This observation can be understood from the
different mobility properties of bonds in the contact zones A0
and A1. The receptor-ligand pairs can form only on those
positions with immobile ligands in the cell-matrix adhesion
zone. Therefore, the adhesion density �cm is limited by the
constant ligand density �0 in A0. In contrary, the receptor-
receptor pairs can appear on any positions in the cell-cell
adhesion zone, and the adhesion density �cc in A1 can reach a
much higher value. A similar conclusion was recently drawn
by Smith et al. �29�, who compared the results of cell-matrix
adhesions with mobile or immobile integrin molecules.

The minimization of the free energy requires that nb0 sat-
isfies the condition �g /�nb0=0. Thereby, we derive

− Cb +
Q0�g

2kBT
�h0 − Lb0�2 + ln

a0�1 − �0� − �nf0 + nb0�
nf0

+ ln
nb0

�0a0 − nb0
= 0, �20�

from which the cell-matrix adhesion density �cm is solved as

�cm =
nb0

a0
= �0
exp�− Cb +

Q0�g

2kBT
�h0 − Lb0�2�

+ 1 −
nf0

a0�1 − �0� − �nf0 + nb0�−1

. �21�

In most situations, nf0 is much smaller than a0�1−�0�− �nf0
+nb0� and h0 is nearly constant. Therefore, �cm is approxi-

(b)

(a)

(c)

FIG. 2. �Color online� Effects of the ligand density �0 on the
competitive cell-cell and cell-matrix adhesions. The variations of
�a� normalized bound receptors nb0 and nb1, �b� dimensionless ad-
hesion areas a0 and a1, and �c� adhesion densities �cm and �cc.
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mately proportional to the ligand density �0, as shown in
Fig. 2�c�.

B. Effect of bond properties of receptor-receptor
and receptor-ligand pairs

Now we vary the equilibrium lengths and spring constants
of receptor-receptor and receptor-ligand pairs in order to ex-
plore their influences on the equilibrium state of the system.
The variations of the allocation functions �nb0, nb1� of bound
receptors and the adhesion densities ��cm, �cc� are shown in
Fig. 3 with respect to the equilibrium length Lb1 of receptor-
receptor pairs. As the value of Lb1 increases, more and more
receptors �nb1� will move into the cell-matrix adhesion
zones, and correspondingly the cell-cell adhesion density �cc
decreases. This is because that the nonspecific interaction
originating from the bonds and repellers becomes less and
less significant with increasing Lb1.

The minimization of the free energy with respect to the
distance h1 between two cells requires that �g /�h1=0.
Thereby, we obtain

h1 =
Q1Lb1nb1 + 2Lgng1

Q1nb1 + 2ng1
. �22�

The corresponding potential energy is

�1 = �g�h1 − Lg�2ng1 +
1

2
�b1�h1 − Lb1�2nb1. �23�

Substituting Eq. �22� into Eq. �23� yields

�1 =
Q1nb1ng1

Q1nb1 + 2ng1
�g�Lg − Lb1�2. �24�

This equation shows that as Lb1 increases toward Lg, the
resistance �1 to the cell-cell adhesion trails off and, hence,
the two cells tend to adhere to each other, as is consistent
with the results in Fig. 3.

With the increase in the dimensionless spring constants
Q1 of receptor-receptor pairs, the variations of �nb0, nb1� and
��cm, �cc� are shown in Fig. 4. Their changes are relatively
slow, demonstrating that in comparison with the parameter
Lb1, the parameter Q1 has a weaker influence on the competi-
tive process. It is known from Eq. �24� that �1 increases with
increasing Q1, since ��1 /�Q1�0. Therefore, the cell-cell ad-
hesion density �cc will increase and provide more binding
energy to overcome the increasing potential �1. Additionally,
the coefficient Q1nb1ng1 / �Q1nb1+2ng1� in Eq. �24� changes
little with Q1, especially when Q1 is large. Thus, the cell-cell
adhesion shows a relatively weak dependence on Q1, as is
consistent with Fig. 4.

(b)

(a)

FIG. 3. �Color online� Influences of the equilibrium length Lb1

of receptor-receptor pairs on the competitive cell-cell and cell-
matrix adhesions, where we take �0=0.03. The variations of �a� nb0

and nb1 and �b� �cm and �cc.

(b)

(a)

FIG. 4. �Color online� Influences of the dimensionless spring
constants Q1 of receptor-receptor pairs on the competitive cell-cell
and cell-matrix adhesions, where we set �0=0.03. The variations of
�a� nb0 and nb1 and �b� �cm and �cc.
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C. Effect of adhesion resistance

We further examine the effect of resistance forces on the
adhesions by varying the spring constant �g of repellers and
the surface tension � of the cell membrane. As the resistance
force �g enhances from 0.006 to 0.015 pN/nm, the normal-
ized bound receptor number nb0 rapidly decreases from about
0.3 to 0, as shown in Fig. 5�a�. Correspondingly, the fraction
nb1 of bound receptors in the cell-matrix adhesion zone A1
increases because more and more receptors are unleashed
from the zone A0 and they can bind the ligands on the matrix.
When �g is larger than the threshold value �0.015 pN /nm,
the cells will not adhere to the matrix for the enhanced re-
pulsive strength of glycocalyx potential. This observation
demonstrates that glycocalyx repulsion plays a more signifi-
cant role in cell-matrix adhesion than in cell-cell adhesion.
This is because that in A0, the adhesion density is limited by
the number density of immobile ligands on the matrix and
the receptor-ligand binding energy cannot reach a higher
level to overcome a strong glycocalyx repulsion, while in A1,
a larger adhesion density can be achieved through the mobil-
ity of receptors. Due to the constant density and immobility
of ligands on the matrix surface, the cell-matrix adhesion
density �cm keeps a constant of about 0.028 in the range of
�g�0.015 pN /nm, as shown in Fig. 5�b�. This constant of
�cm is very close to the specified value of �0=0.03, implying
that almost all ligands in the adhesion zone A0 have bound

the receptors on the cell surfaces. In addition, it is noticed
that the cell-cell adhesion density �cc increases with the in-
crease in the spring constant �g of repellers, and this
strengthening of adhesion for large repulsive strength was
also observed by Smith and Seifert �28�.

Figure 6 illustrate the influence of the dimensionless sur-
face tension ��. Evidently, the surface tension of cell mem-
branes shows a relatively weaker influence on the adhesion
process than the glycocalyx potential. With the increase of ��
in the considered range, cell-matrix adhesion always happens
in spite of the slight decrease of nb0, and �cm keeps a constant
of about 0.024, which is very close to the specified ligand
density �0 of 0.025.

V. MODEL FOR THREE OR AN INFINITE
NUMBER OF CELLS

The above presented model can be extended to more com-
plicated cases. In what follows, we will reformulate this
model for two other situations, namely, three and an infinite
number of cells or vesicles positioned abreast on a matrix
coated with distributed ligands. It is worth mentioning that
an array of vesicles may be easier to reach a thermodynamic
equilibrium than an array of cells because of the complicated
biological behaviors of cells.

A. Case of three cells

In the case of three cells positioned abreast on the matrix,
the binding energy U, the nonspecific interaction energy �,

(b)

(a)

FIG. 5. �Color online� Effects of the spring constant of repellers
�g, where we take �0=0.03. The variations of �a� nb0 and nb1 and �b�
�cm and �cc.

(b)

(a)

FIG. 6. �Color online� Effects of the dimensionless surface ten-
sion ��, where we take �0=0.025. The variations of �a� nb0 and nb1

and �b� �cm and �cc.
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the elastic deformation energy of cell membranes W, and the
mixing entropy S are rewritten as

U = − 3Nb0Ea − 2Nb1Ea, �25�

� =
3

2
Nb0�b0�h0 − Lb0�2 + Nb1�b1�h1 − Lb1�2

+
3

2
Ng0�g�h0 − Lg�2 +

3

2
Ng1�g�h1 − Lg�2, �26�

�W = ��At , �27�

S = ln�
1 � 
2� , �28�

where �At is the total variation of surface areas of the three
cells, and


1 = � 1


�At + �A − A0 − A1�

Nt − Nb0 − Nf0 − Nb1 − Nf1
	

3

� 1


�1 − �0�A0

Nf0
	

3

� 1


�0A0

Nb0
	

3

� 1


�1 − �0�A0 − Nf0

Ng0
	

3

�� 1


�At + �A − A0 − A1� − �Nt − Nb0 − Nf0 − Nb1 − Nf1�

Ng − Ng0 − Ng1
	

3

, �29�


2 = � 1


A1

Nf1
	

2

� 1


A1 − Nf1

Nf1
	

2

� 1


A1 − 2Nf1

Nb1
	

2

� 1


A1 − 2Nf1 − Nb1

Ng1
	

2

� 1


A1 − 2Nf1 − Nb1 − Ng1

Ng1
	

2

. �30�

B. Case of an infinite number of cells

Now we consider another special case consisting of an
infinite number of cells or vesicles periodically lying along a
straight line on the flat substrate. Due to the features of pe-
riodicity and symmetry, only one cell in simultaneous con-
tact with two neighboring cells and the matrix needs to be
considered. The expressions of U, �, W and S become

U = − Nb0Ea − Nb1Ea, �31�

� =
1

2
Nb0�b0�h0 − Lb0�2 +

1

2
Nb1�b1�h1 − Lb1�2

+
1

2
Ng0�g�h0 − Lg�2 +

1

2
Ng1�g�h1 − Lg�2, �32�

�W = ��A , �33�


 = 
1 � 
2, �34�

where,


1 = � 1


�At + �A − A0 − A1�

Nt − Nb0 − Nf0 − Nb1 − Nf1
	� 1


�1 − �0�A0

Nf0
	� 1


�0A0

Nb0
	� 1


�1 − �0�A0 − Nf0

Ng0
	

�� 1


�At + �A − A0 − A1� − �Nt − Nb0 − Nf0 − Nb1 − Nf1�

Ng − Ng0 − Ng1
	 , �35�


2 = � 1


A1

Nf1
	� 1


A1 − Nf1

Nf1
	� 1


A1 − 2Nf1

Nb1
	� 1


A1 − 2Nf1 − Nb1

Ng1
	� 1


A1 − 2Nf1 − Nb1 − Ng1

Ng1
	 . �36�
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C. Results and discussions

By minimizing the Gibbs free energy function of the sys-
tem containing Ncell cells, one can examine the effects of
various factors on the competitive cell-cell and cell-matrix
adhesions, as described in Sec. IV. Additionally, the depen-
dence relationships of the adhesion densities �cc and �cm on
the ligand density �0 on the matrix are plotted in Figs. 7�a�
and 7�b� for Ncell=3 and Ncell=�, respectively. In both the
cases, there exist a critical ligand density below which no
cell-matrix adhesion happens and another above which no
cell-cell adhesion takes place. In other words, the simulta-
neous occurrence of cell-cell and cell-matrix adhesions hap-
pens only in the medium range of ligand density on the ma-
trix. Comparing Figs. 2�c�, 7�a�, and 7�b� leads to the
conclusion that the cell-cell adhesion density �cc decreases

with increasing cell number Ncell, when there exists no cell-
matrix adhesion. It is evident that with the increase of Ncell,
the average adhesion area of each cell will increase. Corre-
spondingly, the cell-cell adhesion density will decrease be-
cause the number of receptors on each cell is constant.

VI. CONCLUSIONS

Based on the biophysical mechanisms of cell adhesion,
we have developed a theoretical model to study the compe-
tition between cell-cell and cell-matrix adhesions. It allows
us to account for some key factors that influence the com-
petitive process, e.g., the binding energy of receptors and
ligands, the properties �equilibrium lengths and spring con-
stants� of glycocalyx molecules and bonds, the elasticity of
cell membranes, the mixing entropy associated with the mo-
bility and the finite number of receptors and repelling mol-
ecules, and the density of immobile ligands on the matrix.

The Monte Carlo method is utilized to account for the
stochastic nature of the adhesion process and to study the
competition between cell-cell and cell-matrix adhesions. The
results show that the density of the immobilized ligands on
the matrix plays an important role in the competitive adhe-
sions. There are a minimal ligand density for the existence of
cell-matrix adhesion and another critical ligand density
above which cell-cell adhesion will not take place. The cell-
cell adhesion density is generally much larger than the cell-
matrix adhesion density when both cell-cell and cell-matrix
adhesions exist. It was also found that glycocalyx interaction
has a greater influence on cell-matrix adhesion than on cell-
cell adhesion and that the cell-cell adhesion density de-
creases with the increase in the cell number.

Finally, it should be pointed out that some other factors
�e.g., cytoskeleton, thermal fluctuations, and substrate mor-
phology �46�� that also influence cell adhesion have not been
taken into account in the present model. In addition, since
the adhesion processes of multiple cells are often in dynamic
and nonequilibrium state, some modifications are necessary
further to capture some more realistic physical mechanisms.
In spite of the limitations, the present study is helpful for
understanding some important experimental phenomena re-
lated to multiple adhesive cells on a matrix.
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